Gender-Based Violence in Paraguay: Selected characteristics and predictive models
DOI:
https://doi.org/10.62544/ucomscientia.v3i1.47Keywords:
Gender-based violence, Machine learning, Predictive models, Public policies, ParaguayAbstract
This study aims to identify the characteristics influencing gender-based violence in Paraguay using machine learning algorithms. Utilizing data from the National Survey on the Situation of Women in Paraguay (ENSIMUP), several predictive models, including Random Forest and Logistic Regression, were applied to analyze factors associated with gender-based violence. The methodology involved rigorous data preprocessing and careful feature selection to enhance model accuracy. The results highlighted the importance of factors such as age, income level, and housing conditions in predicting gender-based violence. The Random Forest model demonstrated superior performance by balancing precision and discriminatory capability. This study underscores the usefulness of predictive models in shaping public policies, suggesting that their integration can significantly improve strategies for preventing and responding to gender-based violence. Continued research with advanced models and data balancing techniques is recommended to optimize risk factor identification and strengthen data-driven policies.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Federico Javier Beck, Agustina Lucia Alfonso González

This work is licensed under a Creative Commons Attribution 4.0 International License.
La Revista Científica UCOM Scientia se distribuye bajo una Licencia Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/deed.es
Los autores de los artículos son los responsables de la obtención del permiso correspondiente para incluir en su artículo cualquier material publicado en otro lugar. La revista declina cualquier responsabilidad que derive del mismo.
Los autores conservan los derechos autorales y ceden a la revista el derecho de la publicación, para el efecto el autor recibirá una carta de consentimiento aprobando lo mencionado.